
7.
MEASUREMENT
PROGRAMMING EXAMPLES
This section
some
examples
of
lnput
Programming
for
common
sensors
used with the
21X.
These
examples
only the connections,
lnput, Program Control,
and Processing
Instructions
necessary to
pertorm
and
store
the data in engineering
units in lnput Storage.
Output
Processing
lnstructions
pre
omitted.
lt is teft
for the
user
to
program
the necessary
instructions to obtain
the
final
data
in the
desired.
NO OUTPUT
TO FINAL
STORAGE WILL
TAKE
PLACE WITHOUT
ADDITIONAI-
PROGRAMMING.
The examplQs
given
in this
section
would likely be only
fragments of
larger
programs.
ln
general,
the
examples
atp
written with the
measurements
made by
the
lowest
numbered
channels,
the
instructions
lt
the beginning
of
the
program
table,
and
low
number
lnput Storage
locations
used to
store
the
dala.
lt is
unlikely
that
an application and
21X
configuration exactly
duplicates
that assumed
In an
THESE EXAMPLES
ARE NOT
MEANTTO BE USED
VERBATIM; SENSOR
AND INPLJT
LOCATIONS SELECTED
MUST
BE
ADJUSTED
FOR THE
ACTUAL
CALIBRA
UNLESS
OTHERWISE
NOTED,
ALL EXCITATION
CHANNELS
ARE
ANALOG OUTPUT.
7.1 DIFFERENTIAL
VOLTAGE
.
LI2OOS
SILICON PYRANOMETER
The silicon
pyranometer puts
out a
current which
is dependedt
upon the solar
radiation
incident
upon
the
sehsor.
The current
is measured as
the
voltage
across a
fixed
resistor. The
Campbell
Ll200S
uses a
100
ohm
resistor.
calibration
supplied
by Ll-COR,
the
int
. The calibration
in terms of
volts is
rers of the
pyranometer,
is
given
determined
py
multiplying
the
pA
calibration by
the
resistanbe
of the fixed
resistor.
The calibratfon
of the
pyranometer
used
in
this
example
is
{ssumed
to be
76.9pA/kW/m2,
which
when multillied
by 100 ohms
equals
7.69mV/kWfm2.
The
multiplier
used
to
convert
the
voltage
feading
to
kWm2
is
1 17 .69mV
lklv
/ m2
=
0.
1
3004.
Most
LI-COR
calibrations
run between
60 and
90uA/kWnl2,
which
correspond
to
calibrations
of
6.0 to
9.dmV/kWm2.
Above
the
earth's
atmospherd,
the
flux
density
through a
surface
normal
to
the solar beam
is 1.36kWm2;
radiation
on earth
will be
less than
this.
Thus,
the
1SmV
soale
provides
an
adequate
range
(g.omv/kwm2
x 1.36
kWm2
<
15mV).
CONNECTIONS
The
pyranqneter
output
is measured
with a
differential
{oltage
measurement
on channel
3.
The
low sidp
of signal
is
jumpered
to
datalogger
ground
to
hold the
signalwithin
common
mode
range
(Section
14.3-2).
FIGURE
7.1-1.
Wiring Diagram
for
Ll200S
PROGRAM
01:
P2
Volt
(DIFF)
01:
1
Rep
02:
2
15 mV slow
Range
03:
3
lN
Chan
04;
1
Loc
[:RAD
kWm2]
05:
.13004 Mult
06:
0
Offset
7.2 DATALOGGER
AND
SENSOR
WITH
A
COMMON
EXTERNAL
POWER
SUPPLY
Some sensors
either contain
or
require
active
signal conditioning
circuitry to
provide
an easily
measured
analog
voltage
output.
Generally, the
output is referenced
to
the
sensor
ground.
The
associated current
drain usually
requires a
power
source
external to
the
21X. A typical
connection
scheme
where AC
power
is not
available
and
both the 21X and
sensor
are
powered
by
an
external battery
is shown
in
WHITE OR CLEAR
7-1
-
21X MICROLOGGER
1
-
OPERATOR'S
1
-
CopynlcHT
1
-
GAI\/
2
-
SiCIEN'rIFIC
2
-
OPT1ONS
3
-
1. FUNCTIONAL
4
-
2. INTERNAL
4
-
4. EXTERNAL
4
-
5. TELECOMMUNICATIONS
4
-
PROGRAMMING
5
-
EXAMPLES
5
-
GLOSSARY
6
-
TABLE
6
-
I SELECTED
7
-
CAUTIONARY
8
-
MICROLOGGER
9
-
OVERVIEW
9
-
I contain
9
-
OVl-z. 21X Wiring
10
-
1. Input
11
-
OV2-1. lnstruction Types
12
-
2. PROCqS$NG TNSTRUCTTONS
13
-
OV3. PROGRAMMING
14
-
2. Enter
15
-
3. Loaded from
16
-
(lD:Data)
17
-
21 .234oC
18
-
Ffalstorage
19
-
0. The Output Flag is
22
-
1. On-line output
23
-
96 Inst. 96
24
-
RETRIEVAL
25
-
SPECIFICATIONS
26
-
1. FUNCTIONAL
27
-
A PROGRAM
28
-
COMPILING
29
-
LOGGING
29
-
Intermediate Final
30
-
A O4:XXXX
31
-
"B
32
-
A 01:0p
33
-
2hex) Discard current
35
-
3hex) Send signature
35
-
4hex) Load
35
-
5hex) Exit and
35
-
2\ The output array
36
-
0.000 +0.001
37
-
. For example
38
-
This is
39
-
1. microvolts
40
-
333. microvolts
40
-
3.7 USE
41
-
3.8 PROGRAM
42
-
1. A Subroutine
43
-
3. An
43
-
4. A case
43
-
3.9 INSTRUCTION MEMORY
44
-
TEMP-RTD R
44
-
SDM-CD16 6
44
-
41 z+EXP(x)
45
-
1+bins*R
46
-
ERRORICODES
47
-
EXTERNAL
48
-
STORAGE
48
-
PERIPHERALS
48
-
Key ID:DATA
49
-
A. Data transfer
50
-
Drain 200mA typ./S
51
-
Length C-60 recommended
51
-
Quality
51
-
CABLES ]
52
-
3. Insert
53
-
I
54
-
4, An illegal character
55
-
Iffi l:ff itffi
56
-
REMOTE PROGRAMMING
57
-
5. TELECOMMUMCATIONS
57
-
PIN SERIAL
59
-
PIN ABR UO
59
-
6.2 ENABLING
60
-
6.3 INTERRUPTING
60
-
6.5 INTERFACING WITH
60
-
ABR YO FUNCTION
61
-
7 DATA BITS
62
-
I AT IPS-2's and
63
-
7.2 DATALOGGER
64
-
7.3 THERMOCOUPLE
65
-
7.6 207 TEMPERATURE
66
-
Thermocouple
66
-
02: P12
66
-
TIPPING
67
-
1 P 3
68
-
5 0.254
68
-
Temperature
69
-
7.10 1OO
69
-
Temperature RTD
70
-
R"
70
-
05: 5000
71
-
ADJUSTABLE
72
-
:calculated to
73
-
P34 Z=X+F
73
-
7.15 NONLINEAR
74
-
-218.76
75
-
55 Polynomial
76
-
SpatialAverage
77
-
02: P92
78
-
8.3 USING CONTROL
79
-
SETS 1_16
80
-
Al Mode
81
-
02: 641
81
-
Excite, Delay,Volt(S
82
-
Temp 107 Probe
82
-
TO 0.540
83
-
DESCRIPTION
84
-
M(V2) 38
85
-
Block Move
86
-
0.'l
87
-
0.69215
88
-
02: 1024
89
-
SII1ULATED
90
-
02; 2048
91
-
02". 2048
92
-
ZLoc'
93
-
9. INPUT/OUTPUT
94
-
0.3 Hz to 1000 Hz
95
-
Input locations altered: 1
97
-
Input locatiQns altered:
98
-
Input locations
99
-
9 Output
100
-
TYPE DESCRIPTION
101
-
22 EXCITATION
102
-
. Locations 1-20
103
-
A Trigger
104
-
3. Entering
105
-
(Parameters
106
-
LOCATION, "**
108
-
40 LN(X)
109
-
46 x MOD F
110
-
54 BLOCK
111
-
. The magnitude of
112
-
59 BRIDGE TRANSFORM
113
-
60 FAST
113
-
2X=Yag6ilude&Phase
114
-
10. PROCESSING
115
-
1.24H2
115
-
F*1*19'*g';
116
-
*F*A/N<fi<i*F*A/N
116
-
LOC. REPRESENTATIVE
117
-
LOC. REPRESENT
117
-
126 50411024 or 1
117
-
2. The 21X
118
-
62 COVARIANCE/CORRELATION
118
-
1. Input Processing
119
-
2. Averaging
119
-
3. Output Processing
119
-
1. Means:
120
-
I minute and one
120
-
N' is
121
-
Quadrant
121
-
11. OUTPUT
122
-
01: 2 Repetitions
123
-
02: 4 Starting input
123
-
*"
124
-
2 Repetitions
125
-
4 Number
125
-
2 Form
125
-
78 SEll HIGH
126
-
80 SET ACTIVE
126
-
Ct',1,t Cu,z cu,ru
127
-
PROGRAM
129
-
CONTROL
129
-
4 lteration count
130
-
10: P87
131
-
NO. TYPE DESCRIPTION
132
-
NO. TYPE
133
-
ASCII 1
134
-
Binary 2
134
-
0-RFModem
135
-
01: 4 Decimal
136
-
1 1200
136
-
2 9600
136
-
3 76.800
136
-
SECTION
137
-
21X MEASUREMENTS
137
-
Setup Amplifier Integrotion
138
-
13.3 THE
139
-
Error Constants
140
-
1 3.3-1 1, respectively
140
-
8723 j
141
-
22 15 62
141
-
Error
142
-
2) V"
143
-
5oo 18603
144
-
Rr does
145
-
13.4 THERMOCOUPLE
146
-
.--.--'-\
147
-
Junction
148
-
Source Error
150
-
13.5 BRIDGE
151
-
5 v RANGE)
152
-
(milliseconds)
153
-
'1-X
154
-
13.6 RESIST
155
-
Quiescent
156
-
REQUIREMENTS
157
-
3. Typicalcurrent
157
-
I alkaline
158
-
MSX5 MSX10
159
-
14.5 DIRECT
159
-
14.7 USE
160
-
14.8 GROUNDING
160
-
MAINTENANCE
161
-
CALIBRATION
161
-
9. Lock
162
-
14. INSTALLATION
163
-
*ffiqgffiililH
164
-
A. GLOSSARY
165
-
: A number which
167
-
B. PROM SIGNATURES
168
-
APPENDIX C
169
-
TELECOMMUNICATIONS
169
-
00 00 00
170
-
F
171
-
C. BINARY TELECOMMUNICATIONS
171
-
51,S0 represent
172
-
M represents
172
-
C. BINARY
173
-
APPENDIX
174
-
ASCII TABLE
174
-
E. CHANGING
175
-
E.3 CHANGING
176
-
F. DOCUMENTATION
177
-
3 Save Program on
178
-
""r-",=L
179
-
............8
180
-
14. INST
181
-
"t=r",=L
182
-
MEASUREMENTS
183
-
21X TNDEX
184
-
60] 10-6
185
-
I nitiate Telecommunications
186
-
72j 11-3
189
Komentarze do niniejszej Instrukcji